Functional Materials & Chemical Design

The development of optoelectronic devices for renewable energy requires not only designing molecular-based or nanostructured functional materials but also engineering the often disordered interfaces in solid-state devices to achieve optimal cooperation among each functional component.

We explore the unique light-harvesting properties and photophysics of materials such as inorganic nanomaterials, organic-inorganic hybrids, molecular assemblies, and bulk semiconductors .

We seek to characterize and optimize these materials using synthesis and spectroscopy. Through chemical design at nanoscale and mesoscale, we aim to achieve optimal energy flow across the interfaces of these functional components in solid-state devices for applications such as solar light harvesting, detector technologies, and sensing.

We are also interested in developing hybrid materials for the optical preparation and the readout of quantum entanglement at room temperature that hold promise for scalable, at-will design of quantum information applications.

Select Publications

Wang, L.; Williams, N. E.; Malachosky, E. W.; Otto, J. P.; Hayes, D.; Wood, R. E.; Guyot-Sionnest, P.; Engel, G. S. Scalable ligand-mediated transport synthesis of organic–inorganic hybrid perovskite nanocrystals with resolved electronic structure and ultrafast dynamics. ACS Nano 2017, 11, 2689–2696.

⭐ Featured in Nature Chemistry News & Views: Turner, D. B. Energy transfer: Resonance is the key for coherence. Nat. Chem. 2017, 9, 196–197.

Wang, L.; Griffin, G. B.; Zhang, A.; Zhai, F.; Williams, N. E.; Jordan, R. F.; Engel, G. S. Controlling quantum-beating signals in 2D electronic spectra by packing synthetic heterodimers on single-walled carbon nanotubes. Nat. Chem. 2017, 9, 219–225.

Wang, L.; Brawand, N. P.; Vörös, M.; Dahlberg, P. D.; Otto, J. P.; Williams, N. E.; Tiede, D. M.; Galli, G.; Engel, G. S. Excitations partition into two distinct populations in bulk perovskites. Adv. Opt. Mater. 2018, 1700975.

Janke, E. M.; Williams, N. E.; She, C.; Zherebetskyy, D.; Hudson, M. H.; Wang, L.; Gosztola, D. J.; Schaller, R. D.; Lee, B.; Sun, C.; Engel, G. S.; Talapin, D. V. Origin of broad emission spectra in InP quantum dots: Contributions from structural and electronic disorder. J. Am. Chem. Soc. 2018, 140, 15791–15803.

Barotov, U.; Klein, M. D.; Wang, L.; Bawendi, M. G. Designing Highly Luminescent Molecular Aggregates via Bottom-Up Nanoscale Engineering. J. Phys. Chem. C 2022, 126, 754–763.

Ginterseder, M.; Franke, D.; Perkinson, C. F.; Wang, L.; Hansen, E. C.; Bawendi, M. G. Scalable synthesis of InAs quantum dots mediated through indium redox chemistry. J. Am. Chem. Soc. 2020, 142, 4088–4092.